Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Clin Virol ; 156: 105274, 2022 11.
Article in English | MEDLINE | ID: covidwho-2004205

ABSTRACT

BACKGROUND: Acute viral respiratory infections are a major health burden in children worldwide. In recent years, rapid and sensitive multiplex nucleic acid amplification tests (NAATs) have replaced conventional methods for routine virus detection in the clinical laboratory. OBJECTIVE/STUDY DESIGN: We compared BioFire® FilmArray® Respiratory Panel (FilmArray V1.7), Luminex NxTag® Respiratory Pathogen Panel (NxTag RPP) and Applied Biosystems TaqMan Array Card (TAC) for the detection of eight viruses in pediatric respiratory specimens. Results from the three platforms were analyzed with a single-plex real-time RT-PCR (rRT-PCR) assay for each virus. RESULTS: Of the 170/210 single-plex virus-positive samples, FilmArray detected a virus in 166 (97.6%), TAC in 163 (95.8%) and NxTag RPP in 160 (94.1%) samples. The Positive Percent Agreement (PPA) of FilmArray, NxTag RPP and TAC was highest for influenza B (100%, 100% and 95.2% respectively) and lowest for seasonal coronaviruses on both FilmArray (90.2%) and NxTag RPP (81.8%), and for parainfluenza viruses 1- 4 on TAC (84%). The Negative Percent Agreement (NPA) was lowest for rhinovirus/enterovirus (92.9%, 96.7% and 97.3%) on FilmArray, NxTag RPP and TAC respectively. NPA for all three platforms was highest (100%) for both parainfluenza viruses 1- 4 and influenza A and B, and 100% for human metapneumovirus with TAC as well. CONCLUSION: All three multiplex platforms displayed high overall agreement (>90%) and high NPA (>90%), while PPA was pathogen dependent and varied among platforms; high PPA (>90%) was observed for FilmArray for all eight viruses, TAC for six viruses and NxTag RPP for 4 viruses.


Subject(s)
Molecular Diagnostic Techniques , Respiratory Tract Infections , Virus Diseases , Child , Coronavirus , Humans , Influenza, Human , Molecular Diagnostic Techniques/methods , Multiplex Polymerase Chain Reaction/methods , Paramyxoviridae Infections , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , Virus Diseases/diagnosis
2.
Clin Infect Dis ; 75(1): e902-e904, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1852972

ABSTRACT

Determining the duration of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines is critical for informing the timing of booster immunization. Many genetic and environmental factors could influence both the magnitude and persistence of the antibody response. Here, we showed that SARS-CoV-2 infection before vaccination and age affected the decay of antibody responses to the SARS-CoV-2 messenger RNA vaccine.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics , Vaccination , Vaccines, Synthetic , mRNA Vaccines
3.
BMC Med ; 19(1): 169, 2021 07 26.
Article in English | MEDLINE | ID: covidwho-1450710

ABSTRACT

BACKGROUND: The global pandemic of coronavirus disease 2019 (COVID-19) is caused by infection with the SARS-CoV-2 virus. Currently, there are three approved vaccines against SARS-CoV-2 in the USA, including two based on messenger RNA (mRNA) technology that has demonstrated high vaccine efficacy. We sought to characterize humoral immune responses, at high resolution, during immunization with the BNT162b2 (Pfizer-BioNTech) vaccine in individuals with or without prior history of natural SARS-CoV-2 infection. METHODS: We determined antibody responses after each dose of the BNT162b2 SARS-CoV-2 vaccine in individuals who had no prior history of SARS-CoV-2 infection (seronegative) and individuals that had previous viral infection 30-60 days prior to first vaccination (seropositive). To do this, we used both an antibody isotype-specific multiplexed bead-based binding assays targeting multiple SARS-CoV-2 viral protein antigens and an assay that identified potential SARS-CoV-2 neutralizing antibody levels. Moreover, we mapped antibody epitope specificity after immunization using SARS-CoV-2 spike protein peptide arrays. RESULTS: Antibody levels were significantly higher after a single dose in seropositive individuals compared to seronegative individuals and were comparable to levels observed in seronegative individuals after two doses. While IgG was boosted by vaccination for both seronegative and seropositive individuals, only seronegative individuals had increased IgA or IgM antibody titers after primary immunization. We identified immunodominant peptides targeted on both SARS-CoV-2 spike S1 and S2 subunits after vaccination. CONCLUSION: These findings demonstrated the antibody responses to SARS-CoV-2 immunization in seropositive and seronegative individuals and provide support for the concept of using prior infection history as a guide for the consideration of future vaccination regimens. Moreover, we identified key epitopes on the SARS-CoV-2 spike protein that are targeted by antibodies after vaccination that could guide future vaccine and immune correlate development.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunity, Humoral , Adult , Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines/immunology , Child , Female , Humans , Middle Aged , RNA, Messenger , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
4.
J Pediatric Infect Dis Soc ; 10(10): 967-969, 2021 Nov 11.
Article in English | MEDLINE | ID: covidwho-1387933

ABSTRACT

Pediatric saliva specimen demonstrated high sensitivity (93%) and specificity (96.2%) compared to paired nasopharyngeal swabs (NPS) by Aptima SARS-CoV-2 Assay (Aptima). Viral loads were comparable in both specimen types. Saliva is a safe, noninvasive, and acceptable alternative specimen for SARS-CoV-2 detection in children.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Humans , Molecular Diagnostic Techniques , Nasopharynx , Saliva , Specimen Handling
6.
Diagn Microbiol Infect Dis ; 101(4): 115518, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1347572

ABSTRACT

We compared the performance of the Abbott Real Time SARS-CoV-2 assay (Abbott assay), Aptima™ SARS-CoV-2 assay (Aptima assay), BGI Real-Time SARS-CoV-2 assay (BGI assay), Lyra® SARS-CoV-2 assay (Lyra assay), and DiaSorin Simplexa™ COVID assay for SARS-CoV-2 detection. Residual nasopharyngeal samples (n = 201) submitted for routine SARS-CoV-2 testing by Simplexa assay during June-July 2020 and January 2021 were salvaged. Aliquots were tested on other assays and compared against the CDC 2019-nCoV Real-Time RT-PCR assay. Viral load in positive samples was determined by droplet digital PCR. Among 201 samples, 99 were positive and 102 were negative by the CDC assay. The Aptima and Abbott assays exhibited the highest positive percent agreement (PPA) at 98.9% while the BGI assay demonstrated the lowest PPA of 89.9% with 10 missed detections. Negative percent agreement for all 5 platforms was comparable, ranging from 96.1% to 100%. The performance of all five assays was comparable.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/virology , Female , Humans , Male , Middle Aged , Nasopharynx/virology , Prospective Studies , Sensitivity and Specificity , Viral Load , Young Adult
7.
Sci Rep ; 11(1): 15927, 2021 08 05.
Article in English | MEDLINE | ID: covidwho-1345584

ABSTRACT

Previous studies focusing on the age disparity in COVID-19 severity have suggested that younger individuals mount a more robust innate immune response in the nasal mucosa after infection with SARS-CoV-2. However, it is unclear if this reflects increased immune activation or increased immune residence in the nasal mucosa. We hypothesized that immune residency in the nasal mucosa of healthy individuals may differ across the age range. We applied single-cell RNA-sequencing and measured the cellular composition and transcriptional profile of the nasal mucosa in 35 SARS-CoV-2 negative children and adults, ranging in age from 4 months to 65 years. We analyzed in total of ~ 30,000 immune and epithelial cells and found that age and immune cell proportion in the nasal mucosa are inversely correlated, with little evidence for structural changes in the transcriptional state of a given cell type across the age range. Orthogonal validation by epigenome sequencing indicate that it is especially cells of the innate immune system that underlie the age-association. Additionally, we characterize the predominate immune cell type in the nasal mucosa: a resident T cell like population with potent antiviral properties. These results demonstrate fundamental changes in the immune cell makeup of the uninfected nasal mucosa over the lifespan. The resource we generate here is an asset for future studies focusing on respiratory infection and immunization strategies.


Subject(s)
COVID-19/immunology , Nasal Mucosa/immunology , SARS-CoV-2/immunology , Adolescent , Adult , COVID-19/genetics , Child , Child, Preschool , Female , Humans , Immunity, Cellular , Immunity, Innate , Infant , Male , Middle Aged , Nasal Mucosa/cytology , Nasal Mucosa/metabolism , Severity of Illness Index , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transcriptome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL